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Abstract

A mathematical model to predict the flow and heat transfer characteristics for a thin film region of a micro-channel

is proposed. Gradient of the vapor pressure and the capillary force are considered. The effects of channel height, heat

flux and slip boundary condition at the solid–liquid interface are investigated. The length of the thin film region is

calculated by comparing the magnitude of the capillary and disjoining pressures. The length and the thickness of the

thin film region decrease exponentially with increasing heat flux. The channel height has no effect on the shape of film

thickness. In the case of slip condition, the decreased film thickness causes the capillary and disjoining pressures to

increase.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The capillary pumped loop (CPL) system using a

phase-change technique to improve the heat transfer

rate has drawn much attention to the electronic cooling

applications. Recently, it has become more important to

remove the heat generated in micro-scale devices as the

advancement of packaging technology has led to the

miniaturization of electronic components. The micro-

CPL system is generally composed of the evaporator,

condenser and vapor and liquid lines.

As shown in Fig. 1, when a liquid is in contact with a

solid surface, the extended meniscus is divided into three

parts [1]: (1) the intrinsic meniscus region, which is

dominated by the capillary forces, (2) the thin film re-

gion, which is governed by both capillary and disjoining

pressures, and (3) the adsorbed region, where the evap-

oration phenomenon does not occur.

In the last few decades, many efforts have been de-

voted to establishing the analytical models and con-

ducting experiments for the performance of the extended

meniscus region in various applications. Derjaguin et al.

[2] were the first to analyze the thermo-fluid character-

istics in the evaporating thin film region. They found

that the solid–liquid molecular interactions in the thin

film resulted in the liquid pressure reduction and the

effect on the vapor pressure was relatively small. Potash

and Wayner [3] studied the transport processes occur-

ring in an evaporating extended meniscus in view of

the physicochemical phenomena. They concluded that

the liquid flows due to the disjoining pressure and the

change of the meniscus curvature provided the necessary

pressure gradient is present. Xu and Carey [4] conducted

a combined analytical and experimental investigation on

the liquid flow behavior in V-shaped micro-grooves.

They suggested an analytical model that predicts the

heat transfer characteristics of film evaporation, and

found that the disjoining pressure differences may play a

central role in the evaporation processes. Ha and Pet-

erson [5] developed a theoretical model for the heat

transfer characteristics of the evaporating thin liquid

films in V-shaped micro-grooves with non-uniform input

heat fluxes. Their results showed that when the disper-

sion number and the superheat are constant, the main

factor affecting the length of the evaporating interline

region is the heat flux supplied to the bottom of the

plate. Kobayashi et al. [6] investigated theoretically and
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experimentally the evaporating heat and mass transfer

phenomena at the vicinity of the liquid meniscus edge in

the evaporator of a groove-type heat pipe. The results

showed that a large heat flux is transported in the nar-

row micro-region.

Fluid modeling of Newtonian flow passing over a

solid surface requires some assumptions about the na-

ture of fluid mechanics. One of the fundamental as-

sumptions is the no-slip condition on the wall. While this

condition has been proven experimentally to be accurate

for a number of types of flow at the macroscopic level, it

often leads to unrealistic behavior at the microscopic

level [7]. For liquids in micro-scales, Loose and Hess [8]

suggested that if the strain rate at the wall exceeds twice

the molecular frequency scale, the no-slip boundary

condition at the wall leads to incorrect results.

As the high heat transport rate occurs in the process

of evaporation in the thin film region, a number of in-

vestigations have been conducted for this region. How-

ever, in most of these studies, the effect of vapor flow

was neglected (i.e. the vapor pressure was assumed to be

constant), some of them ignored the capillary pressure

effect, and the transport phenomena were obtained by

using the no-slip boundary condition at the solid–liquid

interface.

The main purpose of the present study is to obtain

the new mathematical model for the thin film region of

the evaporator in a micro-channel and to investigate the

effects of the parameters such as the input heat flux, the

channel height and the slip boundary condition on

the flow and heat transfer characteristics.

2. Theoretical analysis

The geometrical configuration and the coordinate

system for the evaporating thin film flow in a micro-

channel are shown in Fig. 2. The present mathematical

model includes the gradient of the vapor pressure in the

flow and the capillary force at the liquid–vapor interface.

We consider only the lower half of the micro-channel

because of the geometric symmetry. The following

assumptions are employed in the derivation of the gov-

erning equations:

• a steady-state two-dimensional laminar flow,

• incompressibility of the liquid and the vapor,

• negligibly small convective terms in the momentum

equation,

Nomenclature

�AA dispersion constant (J)
�hh average heat transfer coefficient, in Eq. (17)

H channel height (m)

hfg latent heat of vaporization (J/kg)

k thermal conductivity (W/mK)

K curvature (m�1)

L length of thin film region (m)

_mm mass flow rate per unit width (kg/sm)

_mm00
ev evaporating mass flow rate (kg/sm2)

P pressure (Pa)

q00 heat flux (W/m2)

u velocity of x-direction (m/s)

x, y axial and vertical coordinate (m)

z new axial coordinate, L� x

Greek symbols

b slip coefficient (m)

c strain rate (s�1)

d film thickness (m)

l viscosity (N s/m2)

m kinetic viscosity (m2/s)

q density (kg/m3)

r surface tension (N/m)

s shear stress (N/m2) or time scale (s)

Subscripts

0 junction of thin film region and adsorbed

region

c capillary or critical

d disjoining

i liquid–vapor interface

l liquid

L junction of meniscus region and thin film

region

v vapor

 

 

 

 

 

 

Fig. 1. Physical system of a micro-channel with the heat flux.
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• constant fluid properties and surface tension, and

• evaporation occurring only in the thin-film region.

2.1. Mathematical modeling

In the thin film region, the pressure difference be-

tween the vapor and liquid phases at the liquid–vapor

interface is due to both the capillary ðPcÞ and disjoining

pressures ðPdÞ and it can be expressed as

Pv � Pl ¼ Pc þ Pd ð1Þ

The capillary pressure is defined as the product of the

interfacial curvature, K and the surface tension, r. The
curvature of the interface can be expressed as

K ¼ d2d
dx2

1

"
þ dd

dx

� �2
#�1:5

ð2Þ

The disjoining pressure results from the van der

Waals forces, and relates the film thickness of non-polar

liquids [2]. The disjoining pressure is expressed as

Pd ¼
�AA

d3
ð3Þ

where �AA is a dispersion constant (or Hamaker constant)

and d is the film thickness.

Combining Eqs. (1)–(3), and differentiating it with

respect to x, then we obtain the following differential

equation for dðxÞ:

d3d
dx3

� 3
dd
dx

� �
d2d
dx2

� �2

1

"
þ dd

dx

� �2
#�1

� 1

r
dPv
dx

 
� dPl

dx
þ 3�AA

d4

dd
dx

!
1

"
þ dd

dx

� �2
#�1:5

¼ 0 ð4Þ

As seen in Eq. (4), the liquid and vapor pressures must

be obtained first to obtain the film thickness profiles.

The momentum equation for the liquid in the thin

film region can be approximated by the lubrication

theory,

d2ul
dy2

¼ 1

ll

dPl
dx

ð5Þ

The criterion for applying the slip-flow condition in

liquids was proposed by Loose and Hess [8]. In this

work, the Navier�s partial slip boundary condition [9],

which assumes that the velocity at solid wall is propor-

tional to the strain rate at the surface, is taken as

uw ¼ b
du
dy

����
w

ð6Þ

where b is the slip coefficient. If b is equal to zero, then

no slip boundary condition is obtained.

The velocity profile for the liquid phase ðulÞ is ob-

tained by solving Eq. (5) with the boundary conditions

of shear stress at the liquid–vapor interface and Navier�s
hypothesis of Eq. (6) at the wall. It can be given as

follows:

ul ¼ � 1

2ll

dPl
dx

� �
ð2dy � y2Þ � si

ll

y � b
ll

d
dPl
dx

�
þ si

�
ð7Þ

where si is the shear stress at the liquid–vapor interface.
The slip coefficient, b can be obtained from the follow-

ing equation which is proposed by Thompson and

Troian [10].

b ¼ b0ð1� c=ccÞ
�1=2 ð8Þ

where b0 is the limiting slip length and cc represents the
critical value of the shear rate. The slip coefficient under

the condition of this study turns out to be approximately

5� 10�9 m.

The liquid pressure gradient is obtained by using Eq.

(7) and the definition of _mml ¼
R d
0

qlul dy,

dPl
dx

¼ � _mml

	
þ d

ml

d
2

�
þ b

�
si


�
d2

ml

d
3

�	
þ b

�

ð9Þ

The shape of momentum equation for uv is the same

form as Eq. (5). The liquid is assumed to flow toward the

vapor phase by evaporation at the liquid–vapor inter-

face ðy ¼ dÞ and zero velocity gradient at the centerline

ðy ¼ H=2Þ is also applied. Thus, uv can be obtained as

uv ¼ � 1

2lv

dPv
dx

� �
y2 � H

2lv

dPv
dx

� �
y þ ud

� d
2lv

ðd � HÞ dPv
dx

� �
ð10aÞ

where ud is the velocity at y ¼ d and is given by

ud ¼ uljy¼d

¼ � 1

2ll

dPl
dx

� �
d2 � si

ll

�
þ b

ll

dPl
dx

�
d � b

ll

si ð10bÞ

At the liquid–vapor interface, the shear stress for the

vapor phase is equal to that of the liquid phase.

Therefore, the vapor shear stress at y ¼ d is calculated as

Fig. 2. Schematics and coordinate system for the thin film re-

gion.
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si ¼ ll

oul
oy

����
y¼d

¼ lv

ouv
oy

����
y¼d

¼ d

�
� H

2

�
dPv
dx

� �
ð11Þ

Combining Eqs. (10) and (11), and using the defini-

tion of _mmv ¼
R H=2

d qvuv dy, the pressure gradient for va-

por can be obtained as

dPv
dx

¼ � _mmv

�
þ qvH

2
ud

��
H 3

24mv

	
þ Hd
4mv

ðd � HÞ



ð12Þ

Substitution of Eq. (11) into Eq. (9) yields

dPl
dx

¼ � _mml

	
þ d

ml

d
2

�
þ b

�
dPv
dx

� �
d

�
� H

2

�

�

d2

ml

d
3

�	
þ b

�

ð13Þ

The heat fluxes are specified as the input data. For the

steady state condition, the net mass flow rate of vapor at

x ¼ L (i.e., the junction of the thin film and the meniscus

regions) must be zero, i.e., _mmvðLÞ ¼ 0. Therefore, for

constant q00, we have

_mmvðxÞ ¼
R L�x
0

q00dx
hfg

; _mmlðxÞ ¼
R x
0
q00dx
hfg

ð14Þ

where hfg represents the latent heat of vaporization.

2.2. Boundary conditions

The governing equation for the film thickness, Eq.

(4), is a third-order non-linear ordinary differential

equation. The five boundary conditions for the film

thickness, vapor and liquid pressures at x ¼ 0 are as

follows:

djx¼0 ¼ d0;
dd
dx

����
x¼0

¼ 0;
d2d
dx2

����
x¼0

¼ 0 ð15aÞ

Pv;0 ¼ Pv;satðTv;0Þ; Pl;0 ¼ Pv;0 �
�AA

d3
0

� rK ð15bÞ

In an ideal case, the film thickness at x ¼ 0 (i.e., d0) is

generally of the order of 10�9 m. Water is used as the

working fluid at a saturation temperature of approxi-

mately 383 K.

2.3. Numerical procedures

To obtain the flow and thermal characteristics in the

thin film region, we solve Eqs. (4), (12) and (13) with the

boundary conditions, Eq. (15), using the Runge–Kutta–

Fehlberg method. The length of the thin film region ðLÞ
should be defined and calculated correctly for the clas-

sification of the thin film region and the meniscus region.

The length of thin film region is determined when the

disjoining pressure is greater than or equal to the cap-

illary force because the disjoining pressure becomes a

dominant force in a thin film region. Once L is calcu-

lated, the film thickness can be easily obtained.

3. Results and discussion

In this study, the flow and heat transfer characteris-

tics such as the film thickness and the pressure variations

in the thin film region have been investigated. The in-

fluences of the heat flux, the channel height, and the slip

boundary condition at the solid–liquid interface have

been also investigated numerically. The results presented

in this paper are those for the no-slip boundary condi-

tion if additional explanation is not mentioned. Table 1

shows the basic properties of water as the working fluid.

3.1. Flow and thermal characteristics

Here, the channel height ðHÞ is 150 lm and the heat

flux ðq00Þ is 106 W/m2. To investigate the influence of the

vapor pressure gradient, the film thickness along the

flow direction for the two cases (i.e., present study and

dPv=dx ¼ 0) are shown in Fig. 3. A new independent

variable, z, which is defined as z ¼ L� x, is introduced

Table 1

Properties of H2O as the working fluid at 383 K

Properties Values

Dispersion constant ð�AAÞ 2:87� 10�21 J

Latent heat of evaporation ðhfgÞ 2:256� 106 J/kg

Thermal conductivity of liquid ðklÞ 0.68 W/mK

Density of liquid ðqlÞ 958.31 kg/m3

Viscosity of liquid ðllÞ 2:82� 10�4 N s/m2

Density of vapor ðqvÞ 0.598 kg/m3

Viscosity of vapor ðlvÞ 12:02� 10�6 N s/m2

Surface tension ðrÞ 5:89� 10�2 N/m

Fig. 3. Effect of the vapor pressure on the film thickness.
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here. In most researches, the vapor pressure ðPvÞ was

assumed to be constant for the sake of simplicity al-

though it is obvious that the phase-change process of the

working fluid causes variation of the vapor pressure.

When compared with the present result, the film thick-

ness with a constant vapor pressure is underestimated as

shown in Fig. 3. Therefore, the vapor pressure should

not be assumed to be constant. It is also found that the

film thickness decreases exponentially as the liquid flows

toward the adsorbed region. The profile of thin film is

mainly influenced by the liquid evaporation, and the

evaporation phenomenon causes the pressure gradient

to decrease so that mass conservation has to be main-

tained. Therefore, the variation of film thickness can be

easily explained by the following pressure distribution in

the thin film region.

Fig. 4 shows the liquid and vapor pressure variations

along the axial flow direction ðzÞ. The absolute value of

the vapor pressure is much greater than that of the liquid

pressure in the thin film region as shown in Eq. (15b).

The variation of the liquid pressure is negligible small

for 0 < z < 4 lm and then it decreases sharply. On the

contrary, the vapor pressure gradually decreases with z
and its variation is very small compared to that of the

liquid pressure. This result means that the liquid and

vapor phases flow in the same direction. The pressure

difference between liquid and vapor phases is owing

mainly to the liquid pressure because the gradient of

vapor pressure is relatively small in the thin film region.

From this fact, the variation of liquid pressure is more

dominant factor than that of vapor pressure in forma-

tion of the thin film.

The distributions of capillary and disjoining pres-

sures (Pc and Pd) with z are shown in Fig. 5. The capillary

pressure, which has a maximum value at z ¼ 0, decreases

exponentially along the thin film region and its distri-

bution has the same trend as that of the film thickness.

But the disjoining pressure, which experiences no no-

ticeable change at a minimum value for z < 4 lm, in-

creases sharply to z ¼ 7 lm and then maintains a

maximum value until it reaches the adsorbed region. It is

also found that the disjoining pressure shows a signifi-

cant effect on the flow in the thin film region because its

value is much greater than that of the capillary pressure

as shown in the Fig. 5. Hence, many earlier researches

have neglected the effect of capillary pressure in the thin

film region [4,5].

To investigate the effect of the capillary pressure on

the film thickness, the film thickness for two cases

(present study and Pc ¼ 0 Pa) according to the flow di-

rection is shown in Fig. 6. The distribution of film

thickness with capillary pressure is indeed much flatter

than the case of neglecting the capillary pressure.

Therefore, the capillary pressure effect should be con-

sidered for more accurate results.

3.2. Effect of the heat flux

Fig. 7 presents the length of the thin film region

ðLÞ, the maximum film thickness at z ¼ 0ðdLÞ and theFig. 4. The liquid and vapor pressure variations.

Fig. 5. The capillary and disjoining pressures.

Fig. 6. Effect of the capillary pressure on the film thickness.
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evaporating mass flux ð _mm00
evÞ with various heat fluxes. In

this study, the evaporating mass flux can be related to

the liquid mass flow rate by the following mass balance:

_mm00
ev ¼ � d _mmlðxÞ

dx
ð16Þ

Note that the direction of evaporating mass flux is

normal to the liquid–vapor interface. As shown in Fig.

7, the length of the thin film region and the maximum

thickness decrease as the heat flux increases. In partic-

ular, their gradients are much larger for q00 < 10 MW/

m2. This result is qualitatively in agreement with Ha and

Peterson�s result [5]. The supplied heat flux on the micro-

channel has a little influence on the length of the thin

film region for q00 > 200 MW/m2. The decrease in the

length of the thin film region and maximum film thick-

ness with the heat flux is mainly due to the increase of

the evaporating mass flux ð _mm00
evÞ. The evaporating mass

flux increases linearly with increasing heat flux. If the

evaporating mass flux increases, more liquid has to flow

into the thin film region in order to maintain the law of

mass conservation. This phenomenon can be mainly

achieved by increasing the gradient of the liquid phase

pressure.

To investigate the amount of heat transfer rate in the

micro-channel quantitatively, the average heat transfer

coefficient, �hh, is defined as

�hh ¼ 1

x

Z x

0

hðxÞdx 	 1

L

Z L

0

kl
dðxÞ dx ð17Þ

Fig. 8 illustrates the average heat transfer coefficient

with the heat flux. As the heat flux increases, the average

heat transfer coefficient increases. The increased heat

flux causes an increase of evaporation at the liquid–

vapor interface. The increased evaporation results in the

decreases in both film thickness and maximum length of

the thin film region. Therefore, the decrease of the film

thickness decreases the thermal resistance in the thin film

and causes the heat transfer to increase.

3.3. Effect of the channel height

The film thickness, the capillary pressure and the

disjoining pressure according to the liquid flow direction

for H ¼ 90, 110, 130 and 150 lm are shown in Fig. 9(a)

and (b), respectively. The shape of the film thickness

remains unchanged regardless of the variation of chan-

nel height. The length of the thin film region and the film

thickness decreases as the channel height decreases. This

is due to the fact that the decreased channel height in-

creases the mass flow rate in the liquid phase, and the

increased mass flow rate increases the pressure gradient

in both the liquid phase and the vapor phase. Fig. 9(b)

shows that the location of sharp increase of the dis-

joining pressure moves closer to the inlet of the thin film

region ðz ¼ 0Þ as the channel height decreases. It is also

found that the capillary pressure increases with de-

creasing the channel height. This means that the effect of

capillary pressure on the flow field increases as the

channel height decreases because of the reduction of the

curvature.

Fig. 10 shows the average heat transfer coefficient ð�hhÞ
with the channel heights. As the channel height in-

creases, the heat transfer decreases sharply in the region

of H 6 50 lm and then it decreases slightly. As men-

tioned earlier, the heat from the liquid phase to the va-

por phase increases as the film thickness decreases

gradually. It seems that the Navier–Stokes equation,

with no-slip condition at the solid wall, cannot be used

H 6 50 lm because the strain rate increases with the

decreasing in channel height, which causes cP 2s�1 to

be satisfied. This means that when the no-slip condition

is applied at the liquid–solid interface for H 6 50 lm, the

solution may be unstable.

(

Fig. 7. Variation of the length of the thin film region, the

maximum film thickness and the evaporating mass flux with the

heat flux.

Fig. 8. The average heat transfer coefficient with the heat flux.
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3.4. Effect of the slip boundary condition

Fig. 11 shows the liquid film thickness and the cap-

illary and disjoining pressures along the liquid flow di-

rection for the channel height of 50 lm and the heat flux

of 106 W/m2. When the slip condition at the liquid–solid

interface is considered, the film thickness is decreased

and the length of thin film region becomes shorter

compared with those for the no-slip condition as shown

in Fig. 11(a). This is due to the fact that the liquid flows

faster and the gradient of liquid pressure, in turn, in-

creases compared with that of the no-slip condition. Fig.

11(b) shows that the capillary pressure becomes higher

than that of the no-slip condition. This is mainly due to

the increase in curvature K for the same z-locations
under the constant surface tension, as shown in

Fig. 11. The effect of slip-boundary condition on the flow in the thin film region at H ¼ 50 lm and q00 ¼ 106 W/m2 K: (a) the film

thickness and (b) the capillary and disjoining pressures.

Fig. 9. The effect of channel height on the flow in the thin film region: (a) the film thickness and (b) the capillary and disjoining

pressures.

Fig. 10. The average heat transfer coefficient with the channel

height.
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Fig. 11(a). The disjoining pressure for the slip-flow

condition is higher than that of the no-slip condition due

to the decreased film thickness.

4. Conclusions

A mathematical model considering the gradient

of vapor pressure in the flow and capillary force at

the liquid-vapor interface is presented to investigate the

two-phase flow and heat transfer phenomena in the

evaporating thin film region of a two-dimensional mi-

cro-channel. The effects of the heat flux, the channel

height, and the slip boundary condition at the solid-

liquid interface are investigated.

The shape and thickness of the thin film in a micro-

channel is influenced by the gradient of vapor pressure.

The capillary force must be considered for more accu-

rate results although its value is relatively small com-

pared to the disjoining pressure. As the heat flux

increases, the length and the maximum thickness of

the thin film decrease exponentially and the local evap-

orating mass flux increases linearly. With decreasing

the channel height, the length and film thickness of

the thin film decrease and the effect of the capillary

force increases gradually. However, there is little ef-

fect of the channel height on the shape of the film

thickness.

In the case of the slip condition, the length and film

thickness of the thin film are decreased compared with

those of the no-slip condition, and the decreased film

thickness cause the capillary and disjoining pressures to

increase.
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